Human skeletal muscle drug transporters determine local exposure and toxicity of statins.
نویسندگان
چکیده
RATIONALE The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, are important drugs used in the treatment and prevention of cardiovascular disease. Although statins are well tolerated, many patients develop myopathy manifesting as muscle aches and pain. Rhabdomyolysis is a rare but severe toxicity of statins. Interindividual differences in the activities of hepatic membrane drug transporters and metabolic enzymes are known to influence statin plasma pharmacokinetics and risk for myopathy. Interestingly, little is known regarding the molecular determinants of statin distribution into skeletal muscle and its relevance to toxicity. OBJECTIVE We sought to identify statin transporters in human skeletal muscle and determine their impact on statin toxicity in vitro. METHODS AND RESULTS We demonstrate that the uptake transporter OATP2B1 (human organic anion transporting polypeptide 2B1) and the efflux transporters, multidrug resistance-associated protein (MRP)1, MRP4, and MRP5 are expressed on the sarcolemmal membrane of human skeletal muscle fibers and that atorvastatin and rosuvastatin are substrates of these transporters when assessed using a heterologous expression system. In an in vitro model of differentiated, primary human skeletal muscle myoblast cells, we demonstrate basal membrane expression and drug efflux activity of MRP1, which contributes to reducing intracellular statin accumulation. Furthermore, we show that expression of human OATP2B1 in human skeletal muscle myoblast cells by adenoviral vectors increases intracellular accumulation and toxicity of statins and such effects were abrogated when cells overexpressed MRP1. CONCLUSIONS These results identify key membrane transporters as modulators of skeletal muscle statin exposure and toxicity.
منابع مشابه
Molecular Medicine Human Skeletal Muscle Drug Transporters Determine Local Exposure and Toxicity of Statins
Rationale: The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, are important drugs used in the treatment and prevention of cardiovascular disease. Although statins are well tolerated, many patients develop myopathy manifesting as muscle aches and pain. Rhabdomyolysis is a rare but severe toxicity of statins. Interindividual differences in the activities of hepatic membra...
متن کاملEffect of Statins on Functional Expression of Membrane Transporters in L6 Rat Skeletal Muscle Cells
Background: Statins reduce LDL-cholesterol and the risk of atherosclerosis. They are generally safe, although statin-induced myopathy is relatively common. Membrane transporters play a crucial role in determining statin side effects. Little is known regarding the interaction of drug transporters in muscle cells with statins. Study aims: The present study aimed to determine the effect of statins...
متن کاملInjury to skeletal muscle of mice following acute and sub-acute pregabalin exposure
Objective(s): Pregabalin (PGB) is a new antiepileptic drug that has received FDA approval for patient who suffers from central neuropathic pain, partial seizures, generalized anxiety disorder, fibromyalgia and sleep disorders. This study was undertaken to evaluate the possible adverse effects of PGB on the muscular system of mice. Materials and Methods: To evaluate the effect of PGB on skeletal...
متن کاملAn updated review of interactions of statins with antibacterial and antifungal agents
Numerous antimicrobial agents interact with statins. It is important to prevent these drug interactions and resulting statin toxicity and/or reduced efficacy. We review and highlight major drug-drug interactions between statins and antibacterial and antifungal agents; interactions with antiviral agents were not considered. Daptomycin interacts with statins via additive skeletal muscle toxicity....
متن کاملStudy of Statin- and Loratadine-Induced Muscle Pain Mechanisms Using Human Skeletal Muscle Cells
Many drugs can cause unexpected muscle disorders, often necessitating the cessation of an effective medication. Inhibition of monocarboxylate transporters (MCTs) may potentially lead to perturbation of l-lactic acid homeostasis and muscular toxicity. Previous studies have shown that statins and loratadine have the potential to inhibit l-lactic acid efflux by MCTs (MCT1 and 4). The main objectiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 106 2 شماره
صفحات -
تاریخ انتشار 2010